

AVR32108: Peripheral Direct Memory Access
Driver

Features Peripheral DMA Controller
• Controls transfers to and from peripherals such as USART, SSC, SPI, etc.
• Supports up to 20 channels (device dependent)
• One master clock cycle needed for a transfer from memory to peripheral
• Two master clock cycles needed for a transfer from peripheral to memory
• Utilizes two independent buffers each way for chained transfers
• Interrupts on full/empty buffers

1 Introduction
The Peripheral DMA Controller (PDC) enables data transfers between on-chip
serial peripherals such as the USART, SSC, SPI, TWI and memory controller.
Using the PDC increases the processor performance due to less overhead than an
interrupt driven data transfer would take. This reduces the need for code and
processor speed, which again reduces power consumption.

The PDC channels are implemented in pairs where each pair is dedicated to a
particular peripheral. The pair is divided into one channel for receive and one
channel for transmit.

Setting up and using the PDC is interfaced through registers in the memory for
each peripheral. For each channel these registers contain:

• A 32-bit memory pointer register
• A 16-bit buffer count register
• A 32-bit register for next memory pointer
• A 16-bit register for next buffer count

The PDC is triggered by transmit and receive signals from the peripheral. When
buffers reach their limits the PDC can generate interrupts to the corresponding
peripheral.

This application note includes an example of using the USART with the PDC, with
and without interrupt control. For details regarding interrupt control, application note
AVR®32101 - The AVR32 Interrupt Controller is suggested for further reading.

32-bit
Microcontrollers

Application Note

Rev. 32016A-AVR32-05/06

2 AVR32108
32016A-AVR32-05/06

2 PDC Functional Description

2.1 Block Diagram
Figure 2-1. PDC Block Diagram

Control

PDC Channel 0

PDC Channel 1

THR

RHR

Control
Status & Control

Peripheral Peripheral DMA Controller

Memory
Controller

2.2 PDC Registers
Table 2-1. PDC Register Mapping for AP7000

Offset Register Register name Read/Write Reset

0x100 Receive Pointer Register RPR Read/Write 0x0

0x104 Receive Counter Register RCR Read/Write 0x0

0x108 Transmit Pointer Register TPR Read/Write 0x0

0x10C Transmit Counter Register TCR Read/Write 0x0

0x110 Receive Next Pointer Register RNPR Read/Write 0x0

0x114 Receive Next Counter Register RNCR Read/Write 0x0

0x118 Transmit Next Pointer Register TNPR Read/Write 0x0

0x11C Transmit Next Counter Register TNCR Read/Write 0x0

0x120 PDC Transfer Control Register PTCR Write-only --

0x124 PDC Transfer Status Register PTSR Read-only 0x0

2.3 Configuration
The PDC channels are configurable for the user with the 10 registers described in
chapter 2.2. Each peripheral capable of DMA transfers have these registers mapped
at an offset 0x100 from the peripheral base address.

Buffer size is configured with the counter registers. Reading these registers will give
the remaining transfers left before the buffer is full for receive or empty for transmit.

 AVR32108

 3

32016A-AVR32-05/06

Buffer memory address is configured with the pointer register. Reading these register
returns the next location to be transferred.

The PDC have two registers for status and control. Transmit and receive can
independently be turned off and on by setting TXTEN/TXTDIS and RXTEN/RXTDIS.
Disabling the transfer before reading data from the counter or pointer register
guarantees that the register does not change value between reads.

2.4 Memory Pointers
The PDC transfers data by reading from or writing to a buffer located in memory. The
pointer to the initial memory location is given by setting the RPR register for receives
or the TPR register for transmits.

Depending on the size of the transfer (8-bit, 16-bit or 32-bit), the memory pointers are
automatically incremented by 1, 2 or 4.

It is possible to update the pointer register while the PDC is enabled, this will allow
the PDC to transfer data from a different memory address.

2.5 Transfer Counters
The counter registers control the size of the transfer buffers, the maximum buffer size
is limited by the 16-bit value of these registers. After a transfer the counter is
decremented and when a counter reaches zero the PDC stops transferring data using
the corresponding Pointer Register.

When the Counter Register reaches zero and the Next Counter Register is not equal
to zero the PDC will load the Next Pointer Register into the Pointer Register and load
the Next Counter Register into the Counter Register. This allows chaining the buffers,
making transfer continuous.

If the Next Counter Register equals zero the related peripheral flag is set in the status
register and the PDC stops.

It is possible to update the Counter Register while the PDC is active, this will make
the PDC count transfers from the new value.

End flags are automatically cleared if one of the Counter Registers is written.

Writing to the Next Counter Register when the Counter Register is zero and the PDC
is enabled will automatically load the values from the Next Registers into the Counter
Register and Pointer Register.

The Next Counter Register is set to zero when it is loaded into the Counter Register.

2.6 Data transfers
The transfers are triggered by transmit ready (TXRDY) and receive ready (RXRDY)
signals.

When a peripheral receives data, it sends a receive ready signal (RXRDY) to the
PDC which then requests access to the system bus. When access is granted, the
PDC starts a read of the peripheral receive holding register (RHR) and then triggers a
write in memory.

After each receive, the relevant PDC memory pointer is incremented and the number
of receives left is decremented. When the memory block size is reached, a signal is
sent to the peripheral and the receive operation stops.

4 AVR32108
32016A-AVR32-05/06

When a PDC transmit data, it checks if the transmit ready signal (TXRDY) for the
peripheral is valid for a new transmit. Then the PDC requests access to the system
bus. When access is granted, the PDC loads data into the peripheral transmit holding
register (THR).

After each transfer, the relevant PDC memory pointer is incremented and the number
of transmits left is decremented. When the memory block size is reached, a signal is
sent to the peripheral and the transmit operation stops.

2.7 Priority of PDC Transfer Requests
Priority is fixed for each peripheral on the part; consult the datasheet for further
details. Priority for simultaneous requests of the same type (receive or transmit) for
identical peripherals, but different instances, is determined by the numbering of the
peripherals. Lower number gives higher priority, for example if USART0 and USART1
receives data simultaneous, USART0 will be handled before USART1.

Requests are normally treated in the order they occurred, and receiver are handled
before transmitter requests.

2.8 Interrupts
The PDC does not send interrupt request to the CPU itself. The peripheral devices
that utilize the PDC have dedicated bits in their status registers that are controlled by
the PDC. The peripheral can be configured to interrupt the CPU when these status
bits are asserted.

The PDC will assert a status bit when:

• The first receiver buffer is filled (ENDRX)
• Both receiver buffers are filled (RXBUFF)
• The first transmitter buffer is emptied (ENDTX)
• Both transmitter buffers are emptied (TXBUFE)

For more details concerning the interrupt controller see application note AVR32101 -
The AVR32 interrupt controller.

3 PDC design considerations
Whenever designing an interrupt configuration or peripheral DMA control for a
specific system, care should be taken to get the optimal performance and the best
system behavior.

3.1 PDC buffers and caching
It is critical that the PDC buffers in RAM are updated and not just updated in the
cache. The peripheral DMA controller accesses the memory directly, without using
the memory management unit.

3.1.1 Cache-line alignment

The PDC buffers must be cache-line aligned in memory for correct behavior of the
PDC. If it is not cache-line aligned it may invalidate non-related data.

 AVR32108

 5

32016A-AVR32-05/06

3.1.2 Clean cache

If transmit buffers are placed in cached memory, the cache should be cleaned before
register TCR and TNCR are updated. This has to be performed to ensure that the
memory and cache is consistent.

For receive buffers the cache should be invalidated before register RCR and RNCR
are updated.

4 Implementation

4.1 Driver files
The driver consists of seven files:

• pdc.c, PDC driver source file
• pdc.h, PDC driver header file
• interrupt_gcc.c, interrupt example usage for GNU GCC compiler source file
• interrupt_iar.c, interrupt example usage for IAR® System compiler source file
• interrupt_gcc.h and interrupt_iar.h, interrupt example usage header file
• settings.h, header file for adjusting parameters to the example

For adapting this application note to a specific hardware setup the settings.h file has
to be altered to match the devices and development tools used.

The PDC example application is depending on that the Memory Management Unit
(MMU) is not enabled.

4.1.1 PDC driver files

The PDC driver is a general implementation and will work with any peripheral capable
of PDC with a memory offset of 0x100 to the PDC registers.

To enable the peripheral DMA controller for a module, the module itself must be
initialized as usual. After the module is initialized and enabled, buffers for receive or
transmit must be programmed into the PDC registers. Functions are described shortly
in Table 4-1 and more detailed in the doxygen documentation (see chapter 4.2).

Table 4-1. The PDC driver function summary
Function name Description

pdc_enable() Enables both transmit and receive of data.

pdc_enableTx() Enables transmit of data.

pdc_enableRx() Enables receive of data.

pdc_disable() Disables both transmit and receive of data.

pdc_disableTx() Disables transmit of data.

pdc_disableRx() Disables receive of data.

pdc_setTxBuf()
Set the Pointer Register, Counter Register, Next Pointer Register
and Next Counter Register for transmitting data. Then it enables the
PDC.

pdc_setTxNextBuf() Set the Next Pointer Register and Next Counter Register for
transmitting data.

6 AVR32108
32016A-AVR32-05/06

Function name Description

pdc_setRxBuf()
Set the Pointer Register, Counter Register, Next Pointer Register
and Next Counter Register for receiving data. Then it enables the
PDC.

pdc_setRxNextBuf() Set the Next Pointer Register and Next Counter Register for
receiving data.

pdc_getTcr() Get the number of transmits left from Count Register.

pdc_getTxByesLeft() Get the total number of transmits left from both Counter Register and
Next Counter Register.

pdc_getRcr() Get the number of receives left from Count Register.

pdc_getRxBytesLeft() Get the total number of receives left from both Counter Register and
Next Counter Register.

pdc_flushCache() Flush cache lines

pdc_translatePtr() Translates virtual addresses to physical addresses when the memory
management unit is not in use.

4.1.2 Interrupt driver files

The interrupt driver is an implementation specific driver for PDC interrupts for a given
peripheral, in this example the USART0 module.

For the IAR® Systems compiler the #pragma compiler switch is used.

For GNU GCC compiler the set_interrupts_base() and register_interrupt() are used
with an __int_handler.

For more documentation regarding syntax to the functions consult the code
documentation (see chapter 4.2). More details concerning the interrupt controller see
application note AVR32101 - The AVR32 Interrupt Controller.

4.2 Doxygen documentation
All source code is prepared for doxygen automatic documentation generation.
Premade doxygen documentation is also supplied with the source to this application
note, located in src/doxygen/index.html.

Doxygen is a tool for generating documentation from source code by analyzing the
source code and using known keywords. For more details see
http://www.stack.nl/~dimitri/doxygen/.

4.3 Example code
Included with the application note is an example source code for two compilers. The
example is named pdc_example.c, and the different interrupt conventions for each
compiler are implemented in two separate files. The compiler includes the correct
interrupt functions using macros.

The example code is an application using the USART in different ways. It will start by
doing conventional polled usage of the USART, and by user input it is possible to
switch to PDC driven USART with and without interrupt control.

Figure 4-1 shows the flow of the example application. For detailed explanation of the
functions please see the code documentation (see chapter 4.2).

 AVR32108

 7

32016A-AVR32-05/06

Figure 4-1. Example code flow chart

n
o

init_usart

flush_cache

SW7 pressed?

SW6 pressed?

SW5 pressed?

rgb_setColor(RGB_GREEN)
mode = MODE_INT

rgb_setColor(RGB_GREEN)
mode = MODE_POLLED

rgb_setColor(RGB_GREEN)
mode = MODE_PDC

Yes

mode =
MODE_POLLED?

mode =
MODE_PDC?

mode =
MODE_INT?

No

usart_writeLine()

runningleds()

delay()

pdc_txBytesLeft()
== 0 ?

pdc_setTxBuf()

interrupt_on = 1
start_interrupts()
pdc_setTxBuf()

interrupt_on =
0?

stop_interrupt()

SW7 pressed?

SW6 pressed?

rgb_setColor(RGB_GREEN)
mode = MODE_POLLED

interrupt_on = 0

rgb_setColor(RGB_GREEN)
mode = MODE_PDC

interrupt_on = 0

No

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

interrupt

pdc_setTxNextBuf()

32016A-AVR32-05/06

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, and AVR®, and others, are
the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 PDC Functional Description
	2.1 Block Diagram
	2.2 PDC Registers
	2.3 Configuration
	2.4 Memory Pointers
	2.5 Transfer Counters
	2.6 Data transfers
	2.7 Priority of PDC Transfer Requests
	2.8 Interrupts
	3 PDC design considerations
	3.1 PDC buffers and caching
	3.1.1 Cache-line alignment
	3.1.2 Clean cache

	4 Implementation
	4.1 Driver files
	4.1.1 PDC driver files
	4.1.2 Interrupt driver files

	4.2 Doxygen documentation
	4.3 Example code

